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ABSTRACT 

We develop parametric modeling and estimation 
methods for STAP data based on the results of 
the 2-D Wold-like decomposition. We show that 
the same parametric model that results from the 
2-D Wold-like orthogonal decomposition naturally 
arises as the physical model in the problem of space- 
time processing of airborne radar data. We ex- 
ploit this correspondence to derive computation- 
ally efficient parametric fully adaptive and partially 
adaptive detection algorithms. Having estimated 
the parametric models of the noise and interference 
components of the field, the estimated parameters 
are substituted into the parametric expression of 
the covariance matrix to obtain an estimate of the 
interference-plus-noise covariance matrix. Hence 
the fully-adaptive weight vector is obtained. More- 
over, it is proved that it is sufficient to estimate 
only the spectral support parameters of each inter- 
ference component in order to obtain a projection 
matrix onto the subspace orthogonal to the inter- 
ference subspace. The proposed partially adaptive 
parametric processing algorithm employs this prop- 
erty. The proposed parametric interference mitiga- 
tion procedures can be applied even when only the 
information in a single range gate is available, thus 
achieving high performance gain when the data in 
the different range gates cannot be assumed sta- 
tionary. 

1.   INTRODUCTION 

We propose a new approach for parametric modeling and 
estimation of space-time airborne radar data, based on the 
2-D Wold-like decomposition of random fields. The goal of 
space-time adaptive processing is to manipulate the avail- 
able data to achieve high gain at the target angle and 
Doppler and maximal mitigation along both the jamming 
and clutter lines. Because the interference covariance ma- 
trix is unknown a priori, it is typically estimated using sam- 
ple covariances obtained from averaging over a few range 
gates. Next, a weight vector is computed from the inverse 
of the sample covariance matrix, [l)-[5]. In [8], an approach 

that bypasses the need to estimate the covariance matrix 
was presented: The data collected in a single range gate 
was employed to obtain a least squares estimate of the sig- 
nal power at each hypothesized DOA, through evaluation 
of a weight vector constrained to null the unknown inter- 
ference and noise. In [9] a simple ad-hoc model of the clut- 
ter signal and covariance matrix is proposed. The model 
represents the spectral density of the clutter as a sum of 
Gaussian-shaped humps along the support of the clutter 
ridge. In [10] this model is employed to estimate the clut- 
ter covariance matrix from the data observed in a single 
range gate. 

In this paper, we suggest to adopt the 2-D Wold-like de- 
composition of random fields, [6], as the parametric model 
of the observed data. Employing this model, we derive 
computationally efficient algorithms useful for parametri- 
cally estimating both the jamming and clutter fields. The 
estimation procedure we propose is capable of producing es- 
timates of the interference signals parametric models even 
from the information in a single range gate. Hence, no av- 
eraging over a few range gates is required, achieving high 
performance gain in the practical case when the data in the 
different range gates is non-stationary. Having estimated 
the interference terms parametric models, their covariance 
matrix can be evaluated based on the estimated parame- 
ters. Moreover, the problem of evaluating the rank of the 
low-rank covariance matrix of the interference is solved as a 
by-product of obtaining the parametric estimates of the in- 
terference components. Once the parametric models of the 
interference components have been estimated, several alter- 
native detection procedures are available. In this paper we 
present two such methods: the parametric fully-adaptive 
processing, and the parametric partially-adaptive process- 
ing. 

2.  THE RANDOM FIELD MODEL 

In this section we shall briefly describe the 2-D Wold-like 
decomposition of random fields, [6]. Let {y(n, m)}, (n, TO) € 
Z2, be a complex valued, regular, homogeneous random 
field. Then, y(n,m) can be uniquely represented by the 
orthogonal decomposition 

y(n, TO) = w(n, m) 4- v(n, TO) . (1) 

This work supported by the Air Force Office of Scientific 
Research under Grants F49620-99-1-0067 and F49620-00-1-0083. 

The field {v(n,m}} is a deterministic random field.   The 
field {w(n, TO)} is purely-indeterministic and has a unique 
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Figure 1: RNSHP support; example 
with a = 2 and ß = 1. 

white innovations driven moving average representation, 
given by 

w(n, m) =      Y^     &(*! £)»(»» — &, TO — £) 
(0,0)^(fc,<) 

(2) 

where E(o,o)i(*.« b2(fe' *) < °°; W' °> = *• and M". m)> 
is the innovations field of {y{n, m)\. The notation ■< implies 
that the summation is performed over all the samples that 
are in the "past" of the (n, m) sample, where the past is 
defined with respect to any selected choice of NSHP total- 
ordering on the 2-D lattice. (See, for example, Fig. 1.) 
It is possible to define. [6], a family of NSHP total-order 
definitions such that the boundary line of the NSHP has a 
rational slope. Let a and 8 be two coprime integers, such 
that a ^ 0. The angle 6 of the slope is given by tan 6 = 
ß/a. (See, for example. Fig. 1.) A NSHP of this type is 
called rational rum-symmetrical half-plane (RNSHP). For 
the case where a = 0 the RNSHP is uniquely defined by 
setting 0=1. (For the case where ,3 = 0 the RNSHP is 
uniquely defined by setting a = I.) We denote by O the 
set of all possible RNSHP definitions on the 2-D lattice, 
(i.e., the set of all NSHP definitions in which the boundary 
line of the NSHP has a rational slope). The introduction 
of the family of RNSHP total-ordering definitions results in 
the following count ably infinite orthogonal decomposition 
of the deterministic component of the random field: 

t'(n,m) = p(n.m)+    ^   e(a,ß)(n,m.) . (3) 
<o.fi)€0 

The random field {p{n,m)} is called half-plane determinis- 
tic. The field {e^.g)(n,m)} is the evanescent component 
that corresponds to the RNSHP total-ordering definition 
(«,/8)6 0. 

Hence, if {t/(n,m)} is a 2-D regular and homogeneous 
random field, then y{n, m) can be uniquely represented by 
the orthogonal decomposition 

y(n, m) = w(n, m) 4- p(n, m) +   2J   e(a,ß) ("•>m) •   (4) 
(C0)€O 

It is further shown in [6] that the spectral measures of the 
decomposition components in (4) are mutually singular. A 
model for the evanescent field which corresponds to the RN- 
SHP defined by (a, /?) € O is given by 

j(°..3> 

e(a,ß)(n,™)    =     2_, ,(■».0) 

/(o.|9) 

(n,m) 

„(o./3) 

(5) 

=  £ s\a'0\na-mß)exp(j2n-±—(nß + ma)) 

where the 1-D purely-indeterministic, complex valued pro- 
cesses {s\a-0)(na - mß)} and {s^^na - mß)}, are zero- 
mean and mutually orthogonal for all i £ j. Hence, the 
"spectral density function" of each evanescent field has the 
form of a countable sum of 1-D delta functions which are 
supported on lines of rational slope in the 2-D spectral do- 
main. 

One of the half-plane-deterministic field components, 
which is of prime importance in the STAP problem is the 
harmonic random field 

h(n,m) = ^2CPexP (i2x(nwp + mup) j 
P=i ^ ' 

(6) 

where the Cp's are mutually orthogonal random variables, 
and (u>p, Up) are the spatial frequencies of the pth harmonic. 

3. THE STAP MODEL AND THE 2-D WOLD 
DECOMPOSITION 

The random field parametric model that results from the 
2-D Wold-like orthogonal decomposition naturally arises as 
the physical model in the problem of space-time processing 
of airborne radar data. In the latter problem the target 
signal is modeled as a random amplitude complex expo- 
nential where the exponential is defined by a space-time 
steering vector that has the target's angle and Doppler. In 
other words, in the space-time domain the target model 
is that of a 2-D harmonic component similar to (6). The 
purely-indeterministic component of the space-time field is 
the sum of a white noise field due to the internally generated 
receiver amplifier noise, and a colored noise field due to the 
sky noise contribution. The presence of a jammer results 
in a barrage of noise localized in angle and distributed over 
all Doppler frequencies. Thus, in the angle-Doppler domain 
each jammer contributes a 1-D delta function located at a 
specific angle, and therefore parallel to the Doppler axis. 
In the space-time domain each jammer is modeled as an 
evanescent component with (a,ß) = (1,0) such that its 1- 
D modulating process is a white noise process. The ground 
clutter results in an additional evanescent component of 
the observed 2-D space-time field. The clutter echo from a 
single ground patch has a Doppler frequency that linearly 
depends on its aspect with respect to the platform. Hence, 
clutter from all angles lies in a "clutter ridge", supported 
on a diagonal line (that generally wraps around in Doppler) 
in the angle-Doppler domain. A model of the clutter field is 
then given by (5) with (a, ß) such that tan ß/a corresponds 
to the slope of the clutter ridge. Since the rational numbers 
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are dense in the set of real numbers, an irrational slope of 
the clutter ridge can be approximated arbitrarily close, by a 
rational one. Hence any clutter signal can be either exactly 
modeled, or approximated by an evanescent field. 

We therefore conclude that the foregoing derivation opens 
the way for new parametric solutions that can simplify and 
improve existing methods of STAP. 

4.  ESTIMATION OF THE COMPONENTS 
PARAMETERS: PROBLEM DEFINITION 

We next state our assumptions and introduce some nec- 
essary notations. Let {y(n,m)}, (n,m) e D where D = 
{(i,j)|0 < i < S - 1,0 < j < T - 1} be the observed 
random field. 

Assumption 1: The purely-indeterministic component 
{w(n,m)} is a zero mean circular complex valued random 
field. 

Assumption 2: The number I = X)(a,(S)€01{a'ß) of 
evanescent components in the field, is a-priori known. This 
assumption can be later relaxed. 

Assumption 3: For each evanescent field {e'f'^}, the 
modulating 1-D purely-indeterministic process {sj      } is a 
zero-mean circular complex valued process. 
Lety=[y(0,0),...,j/(0,T-l),...,j/(S-l,T-l)]:r,and 
let w, e)a'ß' be similarly defined. Let 

£<*.*> = 

[*<*•« (0), s<a-« (-/?),..., «j--«(-(r -1)5), 

s<?^(a), s<Q'fl)(a - ß),..., sjQ'»(a - (T - l)/3), 

...,s^ß)((S-l)a),...,s(?'0)((S-l)a-(T-l)ß)\(7) 

be the vector whose elements are the observed samples from 
the 1-D modulating process {s\a'^}. Define 

v(o.« = 

[0, a, ..., (r-l)a, 
ß, ß + a, ..., ß+(T-l)a, ...,..., 
(S-l)ß, (S-l)ß + a, ..., (S-l)ß+(T-l)a]T(&) 

Given a scalar function f(v), we will denote the matrix, 
or column vector, consisting of the values of f(v) evaluated 
for all the elements of v, where v is a matrix, or a column 
vector, by /(v). Using this notation, we define 

d<-«    =    expü27r3__ve>.«) . (9) 

Thus, using (5), we have that 

e(a.<3) _ £KÖ) Q d(*>ß) (10) 

where © denotes an element by element product of the vec- 
tors. 

Note that whenever na—mß = ka—tß for some integers 
n, m, k, £ such that 0<n,k<S-l and 0<m,£<T - 1, 
the same element of £Ja'3) appears more than once in the 

vector. It can be shown, [7], that for a rectangular observed 
field of dimensions S x T the number of distinct samples 
from the random process {s)a '} that are found in the ob- 
served field is Nc = (S-l)|a|+(T-l)|/3| + l-(|a|-l)(|ö|- 
1). This is because Nc is the number of different "columns" 
one can define on such a rectangular lattice for a RNSHP 
defined by (a, ß). We therefore define the concentrated ver- 
sion, s\a'^ of £JQ J to be an A^c dimensional column vector 
of non-repeating samples of the process {sj }. Thus for 
any (a, ß) we have that 

Vi <<*./S) = A' (ID 

where AJ     ' is rectangular matrix of zeros and ones which 
replicates rows of sj      . 

Note however that due to boundary effects, the vector 
s\ ' is not composed of consecutive samples from the pro- 
cess {sj } unless |Q| < 1 or \ß\ < 1. In other words, for 
some arbitrary a and ß there are missing samples in sj '. 
We note that the covariance matrix RJ which character- 
izes the process {sj } is defined in terms of the concen- 
trated version vector s\a-ß) i.e., RJQlS) = E[s\a'ß)(s^'8))H] 
and not in terms of the covariance matrix of the vector 
€{o.« ft(a.« = £[€(».«(€<»^))H] . The matrix RJ<^ is a 

singular matrix, given by RJa's> =AJQ^RJQ>,3) (A^Y. 

Since the evanescent components {ej }, are mutually 
orthogonal, and since all the evanescent components are or- 
thogonal to the purely-indeterministic component, we con- 
clude that r, the covariance matrix of y, has the form 

V^ 
/<«,8) 

r = rPI+  ^   £rjQ-"\ (12) 
(Q,/3)€0   »=1 

where rjQ'^' is the covariance matrix of e\a'ß'. 
Using (10) and (5) we find that 

-(<>.« R (0./S) ©(djQ'«(djQ'«)"). (13) 

5.  PARAMETRIC ESTIMATION OF THE 
INTERFERENCE COMPONENTS 

In this section we derive a computationally efficient algo- 
rithm for estimating both the jamming and clutter fields, 
based on the above results. The proposed estimation algo- 
rithm of the spectral support parameters of the evanescent 
field, o, ß and v\ ' is based on the observation (see the 
evanescent field model (5)) that for a fixed c = na. — mß 
{i.e., along a line on the sampling grid), the samples of the 
evanescent component are the samples of a 1-D constant 
amplitude harmonic signal, whose frequency is v\ '. The 
algorithm is implemented by the following three-step pro- 
cedure: 

In the presence of an evanescent component, the peaks 
of the observed field periodogram are concentrated along 
a straight line, such that its slope is defined by the two 
coprime integers a and ß. Hence, several alternative ap- 
proaches for obtaining an initial estimate of the spectral 
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support parameters of the evanescent component can be de- 
rived by taking the Radon or Hough transforms, [12], of the 
observed field periodogram. (The current implementation 
employs the Hough transform for detecting straight lines in 
2-D arrays). However, due to noise presence, this estimate 
may perturbate. Since on a finite dimension observed field 
only a finite number of possible (a, ß) pairs may be defined, 
the output of the initial stage is a set of possible (a, ß) pairs 
such that the ratio £ is close to the ratio obtained for the 
(a, ß) pair estimated by the Hough transform. 

For each possible (a, ß) pair we next evaluate the fre- 
quency parameter of the evanescent component, vf '. As- 
suming the considered (a,ß) pair is the correct one, we 
know that in the absence of background noise, for a fixed 
c = na- mß (i.e., along a line on the sampling grid), the 
samples of the evanescent component are the samples of a 
1-D constant amplitude harmonic signal, whose frequency is 
v\a'ß\ Hence, by considering the samples along such a line 
we obtain samples of a 1-D constant amplitude harmonic 
signal whose frequency v\a'® can be easily estimated using 
any standard frequency estimation algorithm {e.g., the 1-D 
DFT). 

The test for detecting the correct (a,ß) and v$a"8) is 
then based on multiplying the observed signal y(n, m) by 

exp(—j2ir -i,i2 (nß + ma)), for each of the considered a, ß 

and v\a'^ triplets, and evaluating the variance of this signal 
along a line on the sampling grid such that c = na — mß. 
Clearly, the best estimate of a, ß and u\a'B) is the one that 
results in minimal variance for the 1-D sequence, as in the 
absence of noise the correct a, ß and v\a'ß) result in a zero 
variance. 

Having estimated the spectral support parameters of 
each evanescent component, we take the approach of first es- 
timating a non-parametric representation of its 1-D purely- 
indeterministic modulating process {s\a '}, and only at a 
second stage we estimate the parametric models of these 
processes. Hence, in the first stage we estimate the partic- 
ular values which the vectors €\a'ß^ take for the given real- 
ization, i.e., we treat these as unknown constants. The es- 
timation procedure is implemented as follows: Multiplying 

the observed signal y(n,m) by exp(—j2it- 2+02 (nß + mä)) 
and evaluating the arithmetic mean of this signal along a 
line on the sampling grid such that c = na — mß, we have 

s(°.« (C): 

,-,<■»,« 

Ey(n,m)exp(-j2n—f—r-(nj3 + md))    (14) 
n* 4- ft* 

n&—mß=c 
+ ß2 

where N„ denotes the number of the observed field samples 
that satisfy the relation na — mß = c. Once we obtained 
the sequence of estimated samples from the 1-D modulating 
process {s^'^}, the problem of estimating its parametric 
model becomes entirely a 1-D estimation problem. Assum- 
ing the modulating process is an AR process, and applying 
to the sequence an AR estimation algorithm (see, e.g., [13]) 
we obtain estimates of the modulating process parameters, 
as well. 

AiGfri*****'*^1 
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Figure 2: Spectral density of the observed field. 

Finally, it is important to note that we solve the diffi- 
cult problem of evaluating the rank of the low-rank covari- 
ance matrix of the interference as a by-product of obtaining 
the parametric estimates of the interference components: 
Denote the number of evanescent components (interference 
sources) of the field by Q. It is then shown in [11] that 
the rank of the interference covariance matrix is given by 

rank(r) = S £ \ak\+T £ l&l - E M E l&l • ^ fact 

the special case where Q = 1 and a = 1 is the well known 
Brennan rule, [3], of the rank of the clutter covariance ma- 
trix. 

6.  PARAMETRIC FULLY ADAPTIVE 
PROCESSING 

Having estimated the parametric models of the purely in- 
deterministic and evanescent components of the field, the 
estimated parameters can be substituted into (12)-(13) to 
obtain an estimate of the interference-plus-noise covariance 
matrix r. 

Let vt denote the target steering vector, given by 

V{ = b(c7t) ( 
.)■ 

(15) 

Assuming a linear, uniformly spaced, sensor array and a 
uniform CPI are employed in our model, the spatial steering 
vector a(tf) and the temporal steering vector b(tr) are given 
by 

■ '.e' 
J2T(S-1)*I 

J2*(T-l)v,} 

a(tf) = [l,e^, 

b(Tz) = [l,ej2"w,---,e' 

respectively. It is well known (e.g., [3], p. 57) that the 
optimum space-time filter is given to within a scale factor 
by 

w = r-Vt, (16) 

The test statistic z(-cs, a?) is then given by 
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Figure 3: The test statistic 2(07,1?). 

*(»,*) = wH(ro,^)y = vf (iff.tfXT-1)^ . (17) 

Let xt = (r_1)Hy. We thus have 

z(zu, tf) = vf (o,*)X/ = b*(w) ® aa(tf)X/ •        (18) 

Reorganizing the elements of \f into aTxS matrix * 
where the elements of the fcth row of * are x/((fc — 1)S + 
1)... xi (kS), we conclude that for a linear, uniformly spaced, 
sensor array and uniform CPI the test statistic is given by 

T      S 

z{w,4) = £^e-'
2"<^1>ro

e-
i2'r<*-1)''¥(p,<?) .    (19) 

p=l 9=1 

Thus, z(vs, 0) and ¥(p, 9) are a 2-D DFT pair, and the test 
is equivalent to finding the 2-D frequency where the 2-D 
DFT of *(p, q) is maximal. 

To illustrate the operation of the proposed solution we 
resort to numerical evaluation of some specific examples. 
Consider a 2-D observed random field consisting of a sum 
of a purely-indeterministic component (background noise), 
a single evanescent (interference) component, and three har- 
monic components (targets). The purely-indeterministic 
component is a complex valued circular Gaussian white 
noise field. The evanescent component spectral support 
parameters are (a,ß) = (1,-2), i/1'-2) = 0. The modu- 
lating 1-D purely indeterministic process of this evanescent 
component is a first order Gaussian AR process, such that 
its driving noise variance (<7(1'~2))2 = 2, and a*1,_2'(l) = 
—0.5. There are three targets which are located at (0.05,0), 
(0.15,0.15) and (-0.25,0.15), respectively. The observed 
field dimensions are 48 x 48. 

Let us define the experimental variance of each of the 
field components as Ew = wHw for the purely indetermin- 
istic component; Ec = (e(Q-'s))He<Q',3) for the evanescent 
component; and Ehk = h"hk, k = 1,2,3, for each of the 
harmonic components, where h* is defined in the same way 

w and e(tt'» are defined.  In this example we have ^- — 

6dB, while for the three targets we have -jp- = —12.8dB, 

^ = -14.5dB, ^ = -15dB. Due to the strong in- 
terference component, the presence of the three targets is 
hard to detect in the observed data whose power spectral 
density is depicted in Fig. 2. However these targets are 
easily detected by the test statistic z(xz, i?) depicted in Fig. 
3. In Fig. 3, Z(G7, tf) is depicted as a function of the two- 
dimensional frequencies, i.e., angle and Doppler. 

7.  PARAMETRIC PARTIALLY ADAPTIVE 
PROCESSING 

Recall that 

if» = (A<Q-»R[a-»(A<*-»)T) ©(d<°'»(d<Q-«)H) . 
(20) 

Having estimated a,ß and v\ ' using the algorithm in 

Section 5, the vector d\ ' is known. Hence, demodulating 
ei » we conclude using (10) that the demodulated vector 
which we denote by ef   ' is given by 

s<a,/3) „<".« 0((dh«)"f (21) 

From (11) we conclude that the covariance matrix of e'    'is 
given by 

*<<»,« >f»R<Q'»(A<"-»)T (22) 

In the following it is proved that since a and ß are 
already known, an orthogonal projection matrix onto the 
low-rank subspace spanned by the evanescent field covari- 
ance matrix can be found without estimating the paramet- 
ric model of the evanescent field 1-D modulating process, 
and hence without estimating R; '. Moreover this result 
enables us to avoid the need in both evaluating the field 
covariance matrix, and in employing a computationally in- 
tensive eigenanalysis to the estimated covariance matrix. 

More specifically, let us construct the following orthog- 
onal projection matrix 

T(a.«    =    A^«((A<<1-»)TAh»)"1(A<Q'»)T(23) 

It is easily verified (by substitution) that T.a   ' is an or- 

thogonal projection onto the range space of f V 
any ST dimensional vector v 

<«./3) 

rf-»v p(a,0)T(a,«v _ 

since for 

(24) 

Also, (T<a'»)2 = T^»  and (T<a'»)T = T<Q'». 

Note that since A)a' ' is a sparse matrix of zeros and 

ones only, the computation of Tf   ' is very simple. 
The projection matrix onto the subspace orthogonal to 

the interference space is therefore given by (x>a,^)-L = 

I — T;a'». Hence by projecting the demodulated observed 

data vector y = y©((d^a'»)-w)T onto the subspace orthog- 
onal to the interference subspace, a reduced dimension data 

vector given by y = ((T\a,ß))x J    y is obtained, such that 
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Figure 4: Spectral density of the field after being pro- 
jected onto the subspace orthogonal to the interference 
subspace. 

the interference contribution to the observed signal is mit- 
igated. Remodulating y by evaluating y © d\a,ß\ followed 
by sequentially applying this procedure to mitigate each of 
the interference sources, the detection problem is reduced 
to that of detecting a target in the presence of background 
noise only. Thus, in the special case where the background 
noise is known to be a white noise field, the statistical test 
is equivalent to finding the 2-D frequency where the 2-D 
DFT of the processed data vector (organized back into a 
2-D array) is maximal. 

As an example consider the same field as in the previous 
section. Due to the strong interference component, the pres- 
ence of the three targets is hard to detect in the observed 
data whose power spectral density is depicted in Fig. 2. 
However these targets are easily detected in the processed 
data as illustrated in Fig. 4. This result is obtained with- 
out estimating the parametric model of the evanescent field 
1-D modulating process, and hence without estimating the 
interference-plus-noise covariance matrix. Since both the 
estimation of the interference-plus-noise covariance matrix, 
as well as its analysis are saved, the proposed parametric 
partially adaptive processing method is robust and compu- 
tationally attractive. 
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